МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»					
Декан ФВТ А.Н. Пылькин	Проректор по учебной работе К.В. Бухенский					
«»2018 г.	«»2018 г.					
Руководитель ОПОП В.П. Корячко						
«»2018 г.						

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.2.В.02б «Модели и методы анализа проектных решений»

Направление подготовки 11.03.03 Конструирование и технология электронных средств

ОПОП академического бакалавриата «Конструирование и технология радиоэлектронных средств»

Квалификация (степень) выпускника — бакалавр Форма обучения — очная

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы магистратуры

Рабочая программа дисциплины «Модели и методы анализа проектных решений» является составной частью основной профессиональной образовательной программы (ОПОП) бакалавриата «Конструирование и технология радиоэлектронных средств», разработанной в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.03.03 Конструирование и технология электронных средств (уровень бакалавриата), утвержденным приказом Минобрнауки России от 12.11.2015 г. № 1333.

Целью освоения дисциплины «Модели и методы анализа проектных решений» является изучение задач, методов, алгоритмов анализа проектных решений в современных ЭВС используемых при концептуальном проектировании сложных изделий, при разработке проектов автоматизированных систем различного назначения, а также при проведении технико-экономического анализа эффективности проектируемых систем.

Задачи дисциплины.

- 1. Получение теоретических и практических знаний о способах формализации задач анализа проектных решений, а также о методах их решения, применяемых в научно-исследовательской и проектной деятельности.
- 2. Приобретение практических навыков алгоритмизации методов оптимального проектирования и моделирования при концептуальном проектировании сложных изделий, разработке проектов автоматизированных систем различного назначения и анализе эффективности проектируемых систем.
- 3. Получение теоретических знаний и практических умений в области использования стандартных пакетов прикладных программ для решения задач моделирования и оптимального проектирования при разработке математических моделей исследуемых процессов и изделий, методик проектирования новых процессов и изделий, а также при проведении технико-экономического и функционально-стоимостного анализа эффективности проектируемых систем.

Перечень планируемых результатов обучения по дисциплине

Коды компетен- ций	Содержание Компетенций	Перечень планируемых результатов обучения по дисциплине			
ОПК-1	способность представ- лять адекватную совре- менному уровню знаний научную картину мира на основе знаний естест- венных наук и математи- ки	Знать: основные положения, законы и методы математики для описания исследуемых процессов и изделий в современных ЭВС, способы математического описания проектных решений, содержательные и формализованные постановки задач анализа, применяемые при концептуальном проектировании сложных изделий. Уметь: самостоятельно разрабатывать математические модели при решении прикладных задач в научноисследовательской и проектной деятельности. Владеть: навыками анализа проектных решений при конструировании ЭВС.			
ПК-1	Способность моделировать объекты и процессы, используя пакеты автоматизированного проектирования и исследования	Знать: перспективные методы исследования проектных решений на основе математического и имитационного моделирования, применяемые при концептуальном проектировании сложных изделий и анализе эффективности проектируемых систем. Уметь: разрабатывать модели проектируемых сложных изделий и применять перспективные методы их			

исследования на основе математического и имитаци-
онного моделирования при решении профессиональ-
ных задач.
Владеть: практическими навыками алгоритмизации и
программной реализации методов математического и
имитационного моделирования основе знания миро-
вых тенденций развития вычислительной техники и
информационных технологий.

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Модели и методы анализа проектных решений» является обязательной, относится к вариативной части блока №1 дисциплин основной профессиональной образовательной программы академического бакалавриата «Конструирование и технология радиоэлектронных средств» по направлению подготовки 11.03.03 Конструирование и технология электронных средств ФГБОУ ВО «РГРТУ».

Дисциплина изучается по очной форме обучения на 2 курсе в 4 семестре.

Пререквизиты дисциплины. Для изучения дисциплины обучаемый должен

знать: матрицы и определители; системы линейных уравнений; производную и дифференциал функции; дифференциальное исчисление для функций нескольких переменных; вероятности событий; случайные величины и их характеристики; законы распределения случайных величин; статистическая обработка данных; представление числовых данных в памяти компьютера; базовые принципы и технологии разработки алгоритмов и программ;

уметь: применять методы решения систем линейных уравнений; решать системы линейных уравнений; выполнять операции векторной алгебры; решать уравнения и системы уравнений; выполнять операции дифференцирования и интегрирования разрабатывать разветвляющиеся, циклические алгоритмы и алгоритмы в соответствии с принципом модульности для решения прикладных задач; разрабатывать и анализировать алгоритмы по условию прикладной задачи;

владеть: навыками алгоритмизации и программной реализации типовых задач программирования; средствами современных систем программирования для составления, отладки, тестирования программ на языках высокого уровня; навыками разработки программного обеспечения с помощью интегрированных сред; средствами современных пакетов прикладных программ автоматизации математических расчетов и обработки экспериментальных данных.

Взаимосвязь с другими дисциплинами. Курс «Модели и методы анализа проектных решений» содержательно и методологически взаимосвязан с другими курсами, такими как «Оптимизация в проектировании ЭС».

Программа курса ориентирована на возможность расширения и углубления знаний, умений и навыков бакалавра для успешной профессиональной деятельности.

Постреквизиты дисциплины. Компетенции, полученные в результате освоения дисциплины необходимы обучающемуся при изучении следующих дисциплин: «Преддипломная практика», «Выпускная квалификационная работа».

3. Объем дисциплины и виды учебной работы

Общая трудоемкость (объем) дисциплины (модуля) составляет 3 зачетные единицы (ЗЕ), 108 часов.

Вид учебной работы	Всего часов
Общая трудоемкость дисциплины, в том числе:	108
Контактная работа обучающихся с преподавателем (всего), в том	48
числе:	
Лекции	24
Лабораторные работы	16
Практические занятия	8
Самостоятельная работа обучающихся (всего),	60
в том числе:	
Курсовая работа / курсовой проект	-
Подготовка к экзамену, консультации	-
Консультации в семестре	6
Самостоятельные занятия	54
Вид промежуточной аттестации обучающихся	зачет

4. Содержание дисциплины

4.1. Содержание дисциплины, структурированное по темам (разделам)

Тема 1. Элементы системного анализа.

Системный подход, задачи анализа проектных решений. Математическая модель проектируемого объекта. Структурная и параметрическая оптимизация. Общая постановка задачи оптимизации.

Тема 2. Математическая постановка задач оптимизации и принятия решений.

Экстремальные задачи и их классификация: условные и безусловные; одномерные и многопараметрические; унимодальные и многоэкстремальные; однокритериальные и векторные. Многокритериальность. Выбор критериев оптимизации при решении инженерных задач. Методы оценивания важности частных критериев оптимальности. Основные виды задач математического программирования: линейные, нелинейные, выпуклые, невыпуклые, дискретные, непрерывные задачи.

Тема 3. Линейное программирование.

Математическая постановка задачи. Общая, стандартная и каноническая формы задачи линейного программирования. Базисные решения задачи линейного программирования. Геометрическая интерпретация. Стандартный симплекс-метод решения задачи линейного программирования. Табличная форма симплекс-метода.

Тема 4. Модели и методы дискретного программирования в задачах анализа проектных решений.

Общая характеристика задач и методов дискретного программирования. Задачи целочисленного программирования. Методы отсечения Гомори. Метод ветвей и границ. Применение метода ветвей и границ для задачи целочисленного линейного программирования. Задача о назначениях. Венгерский алгоритм. Метод динамического программирования для многошаговых задач принятия решений. Принцип оптимальности Беллмана. Основное функциональное уравнение. Вычислительная схема метода динамического программирования. Применение метода динамического программирования для решения прикладных задач.

Тема 5. Методы решения задач нелинейного программирования.

Методы безусловной оптимизации. Необходимые и достаточные условия существования безусловного экстремума. Вычислительная схема методов регулярного поиска экстремума. Координатные и градиентные методы. Методы нулевого и первого порядков. Градиентный метод, метод наискорейшего спуска, метод покоординатного спуска. Овражные и гребневые ситуации. Метод оврагов, методы сопряженных направлений. Поиск экстремума при ограничениях в виде равенств. Необходимые условия существования экстремума. Метод неопределенных множителей Лагранжа. Поиск экстремума при ограничениях в виде неравенств. Необходимые условия существования экстремума. Теорема Куна-Таккера. Методы штрафных функций. Методы случайного поиска экстремума в задачах нелинейного программирования. Методы Монте-Карло, случайного блуждания. Методы поиска глобального экстремума.

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах).

№ п/п	Тема	Общая трудоем- кость, всего	об	Контактная работа обучающихся с преподавателем		ас	Самостоятельная работа обучающихся
		часов	Всего	лекции	Практ	Лабор	
1	Элементы системного анализа.	10	2	2	-	-	8
2	Математическая постановка задач оптимизации и принятия решений.	22	10	6	4	-	12
3	Линейное программирование	26	16	6	2	8	10
4	Задачи и методы дискретного программирования.	34	18	8	2	8	16
5	Методы решения задач нелинейного программирования	10	2	2	ı	-	8
6	Консультации в семестре	6	-	-	-	-	6
7	Зачет	-	-	-	-	-	-
	Всего	108	48	24	8	16	60

Виды практических, лабораторных и самостоятельных работ

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость, часов
1	Элементы системного анализа.	Самостоятель- ная работа обучающихся	Изучение конспекта лекций	8
2	Математическая постановка задач оптимизации и принятия решений.	Практическая работа	Исследование возможностей стандартных пакетов прикладных программ для решения задач синтеза проектных решений	4
		Самостоятель- ная работа обучающихся	Изучение конспекта лекций Подготовка к практической работе	6
3	Линейное программирование	Практическая работа	Графическое решение задачи линейного программирования	2
		Лабораторная работа	Решение задачи линейного программирования средствами программы Excel	4
			Разработка и исследование программы для решения задачи линейного программирования	4
		Самостоятель- ная работа	Изучение конспекта лекций, подготовка к выполнению и	2
		обучающихся	защите лабораторной работы, оформление отчета	4 4
4	Задачи и методы дискретного программирования.	Практическая работа	Исследование структурных свойств графовых моделей проектных решений методом поиска в глубину (ширину)	2
		Лабораторная работа	Решение задач дискретного программирования средствами программы Excel (задача о назначениях)	4
			(задача о назначениях) (транспортная задача)	4
		Самостоятельная работа обучающихся	Изучение конспекта лекций, подготовка к выполнению и защите лабораторной работы,	4 4 4
			оформление отчета	4
5	Методы решения задач нелинейного программирования	Самостоятельная работа обучающихся	Изучение конспекта лекций	8
6	Консультации в семестре	Самостоятельная работа обучающихся	Изучение конспекта лекций. Подготовка и выполнение ПЗ.	6

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Бакулева М.А., Скворцов С.В., Хрюкин В.И. Методы оптимизации. Рязань: РФ МЭСИ, 2015. $160 \, \mathrm{c}$.
- 2. Информационные технологии в линейной оптимизации [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост. С.В. Скворцов. Рязань, 2007. 28 с. Режим доступа: http://elib.rsreu.ru/ebs/download/956
- 3. Решение задач вычислительной математики в MathCAD [Электронный ресурс]: методические указания к лабораторной работе / Рязан. гос. радиотехн. акад.; сост.: А.А. Митрошин, С.В. Скворцов. Рязань, 2006. 16 с. Режим доступа: http://elib.rsreu.ru/ebs/download/955
- 4. Моделирование систем в среде GPSS World: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: В.А. Шибанов. Рязань: РГРТУ, 2008. 32 с.
- 5. Описание структур вычислительных систем на языке GPSS: методические указания к лабораторным работам / Рязан. гос. радиотехн. акад; сост.: С.В. Скворцов, И.А. Телков, В.И. Хрюкин.- Рязань: РГРТА, 1999. 37 с.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств приведен в Приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Модели и методы анализа проектных решений»).

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная учебная литература

- 1. Пылькин А.Н. Теория систем и системный анализ: учеб. М.: КУРС, 2017. 190с.
- 2. Советов Б.Я. Моделирование систем. Практикум: учеб. пособие. 2-е изд., перераб. и доп. М.: Высш. шк., 2003. 295с.
- 3. Пантелеев А.В. Методы оптимизации [Электронный ресурс]: учебное пособие / А.В. Пантелеев, Т.А. Летова. Электрон. текстовые данные. М.: Логос, 2011. 424 с. 978-5-98704-540-4. Режим доступа: http://www.iprbookshop.ru/9093.html
- 4. Акулич И.Л. Математическое программирование в примерах и задачах [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/2027
- 5. Казиев В.М. Введение в анализ, синтез и моделирование систем [Электронный ресурс] / В.М. Казиев. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 270 с. 5-9556-0060-4. Режим доступа: http://www.iprbookshop.ru/52188.html
- 6. Боев В.Д. Компьютерное моделирование [Электронный ресурс] / В.Д. Боев, Р.П. Сыпченко. 2-е изд. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 525 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73655.html

Дополнительная учебная литература

1. Аверченков В.И. Основы математического моделирования технических систем [Электронный ресурс]: учебное пособие / В.И. Аверченков, В.П. Федоров, М.Л. Хейфец. — Электрон.

- текстовые данные. Брянск: Брянский государственный технический университет, 2012. 271 с. 5-89838-126-0. Режим доступа: http://www.iprbookshop.ru/7003.html
- 2. Нахман А.Д. Введение в стохастическое моделирование [Электронный ресурс]: учебное пособие / А.Д. Нахман, Ю.В. Родионов. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 89 с. 978-5-4486-0168-2. Режим доступа: http://www.iprbookshop.ru/70761.html
- 3. Костюкова Н.И. Основы математического моделирования [Электронный ресурс] / Н.И. Костюкова. 2-е изд. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 219 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73691.html
- 4. Битюцкий В.П. Математическое обеспечение автоматизации проектирования [Электронный ресурс]: учебное пособие / В.П. Битюцкий, С.В. Битюцкая. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, 2015. 72 с. 978-5-7996-1447-8. Режим доступа: http://www.iprbookshop.ru/65942.html
- 5. Методы оптимизации в примерах в пакете MathCad 15. Ч. II: учебное пособие [Электронный ресурс]: учеб. пособие / С.В. Рыков [и др.]. Электрон. дан. Санкт-Петербург: НИУ ИТМО, 2015. 178 с. Режим доступа: https://e.lanbook.com/book/91489.

8. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины

Электронные образовательные ресурсы

- 1. Сайт национального общества имитационного моделирования [Электронный ресурс]. URL: http://simulation.su/
- 2. Учебное руководство по системе GPSS World [Электронный ресурс]. URL: http://open.ifmo.ru/images/5/56/33071_gpss_world_tutorial.pdf
- 3. Дигрис А. В. Дискретно-событийное моделирование: курс лекций [Электронный ресурс]. URL: http://simulation.su/uploads/files/default/2011-uch-posob-digris-diskr-sob-mod.pdf
- 4. Национальный открытый университет «ИНТУИТ» [Электронный ресурс]. URL: http://www.intuit.ru/
- 5. Образовательный математический сайт [Электронный ресурс]. URL: http://www.exponenta.ru/
- 6. Информационная система «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]. URL: http://window.edu.ru/

Профессиональные базы данных, информационно-справочные системы

- 1. Программирование на С и С++ (онлайн справочник) [Электронный ресурс]. URL: http://www.c-cpp.ru/books/obektno-orientirovannoe-programmirovanie
- 2. Справочник Turbo Pascal (онлайн справочник) [Электронный ресурс]. URL: http://tpdn.ru/

9. Методические указания для обучающихся по освоению дисциплины

Для освоения дисциплины требуется предварительная подготовка по соответствующим разделам высшей математики, программирования и алгоритмизации, включая навыки разработки программного обеспечения с помощью интегрированных программных сред (IDE).

Перед началом проведения лабораторных работ необходимо ознакомится с методическими указаниями к лабораторным работам. Обязательное условие успешного усвоения курса – большой объём самостоятельно проделанной работы.

Рекомендуется следующим образом организовать время, необходимое для изучения лисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю в ходе подготовки к практическому занятию и теоретическому зачету.

Изучение методических указаний к лабораторной работе — 2 часа перед выполнением лабораторной работы и в ходе разработки проекта и 2 часа для оформления отчета, отладки проекта и подготовки к сдаче работы.

Для успешного и своевременного выполнения практических и лабораторных работ рекомендуется использовать систему программирования PascalABC или Qt Creator с компилятором C++ MinGW, а также общецелевую систему имитационного моделирования GPSS World Student Version, которые желательно инсталлировать на домашнем компьютере. Для установки программного обеспечения используйте официальные репозитории.

Перед выполнением практического занятия необходимо внимательно ознакомиться с учебным материалом и заданием на самостоятельную работу. Желательно до занятия заранее выполнить подготовку программного проекта в инструментальной среде программирования или моделирования, чтобы на занятии осталось время для обсуждения и сдачи отчета.

Перед сдачей работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу. Таким образом вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме. Ответы на многие вопросы, связанные с дисциплиной «Модели и методы анализа проектных решений», вы можете получить в сети Интернет, посещая соответствующие информационные ресурсы.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;
- освоению умений прикладного и практического использования полученных знаний в области анализа и синтеза проектных решений в ЭВС;
- получению навыков использования стандартных программных средств для решения задач профессиональной деятельности.

Самостоятельная работа как вид учебной работы может использоваться на лекциях, практических и лабораторных занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к теоретическому зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов и тем дисциплины «Модели и методы анализа проектных решений»;
- выполнение практического или лабораторного задания: составление проекта программы для очередного практического или лабораторного занятия;
 - выполнение домашнего задания: тестирование и отладка программы;
 - выполнение курсового проекта;
 - подготовка к защите практического или лабораторного задания, оформление отчета.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для выполнения контроля знаний обучающимися используется тестовое задание в системе дистанционного тестирования РГРТУ «Академия» (http://distance.rrtu):

- тест по дисциплине «Методы анализа и синтеза проектных решений» (автор - профессор каф. САПР ВС Скворцов С.В.).

Перечень лицензионного программного обеспечения:

1) Операционная система Windows XP (лицензия Microsoft DreamSpark Membership ID 700102019);

- 2) Среда разработки PascalABC.NET (лицензия GNU LGPL). Режим доступа: http://pascalabc.net/ssyilki-dlya-skachivaniya
- 3) Среда разработки Qt Creator (лицензия LGPL). Режим доступа: http://www.qt.io/ru/download-open-source
- 4) Компилятор языка C++ MinGW (лицензия LGPL). Режим доступа: http://www.qt.io/ru/download-open-source
- 5) Общецелевая система моделирования GPSS World Student Version (лицензия Freeware). Режим доступа: http://www.minutemansoftware.com/downloads.asp
- 6) Система автоматизации математических расчетов MathCAD 14.0 (Product code SE14RYMMEV0002-FLEX-ACAD)
- 7) Табличный процессор MS Excel (входит в пакет MS Office Professional 2003. Open License 19996967)

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для освоения дисциплины необходимы:

- 1) для проведения лекционных занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарногигиеническим требованиям;
- 2) для проведения практических занятий необходим класс персональных компьютеров с инсталлированными операционными системами Microsoft Windows XP (или выше) и установленным лицензионным программным обеспечением, указанным выше (п.10);
- 3) для проведения лекций и практических занятий аудитория должна быть оснащена проекционным оборудованием.

Программу составил к.т.н., доцент кафедры САПР ВС

Хрюкин В.И.

Программа рассмотрена и одобрена на заседании кафедры САПР ВС (протокол № 8 от 20.08.2018 г.)

Зав. кафедрой САПР ВС д.т.н., проф.

Корячко В.П.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»
Декан ФВТ А.Н. Пылькин	Проректор по учебной работе К.В. Бухенский
«»2018 г.	«»2018 г.
Руководитель ОПОП В.П. Корячко	
«»2018 г.	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.2.В.026 «Модели и методы анализа проектных решений»

Направление подготовки 11.03.03 Конструирование и технология электронных средств

ОПОП академического бакалавриата «Конструирование и технология электронно-вычислительных средств»

> Квалификация (степень) выпускника — бакалавр Форма обучения — очная

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы магистратуры

Рабочая программа дисциплины «Модели и методы анализа проектных решений» является составной частью основной профессиональной образовательной программы (ОПОП) бакалавриата «Конструирование и технология электронно-вычислительных средств», разработанной в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.03.03 Конструирование и технология электронных средств (уровень бакалавриата), утвержденным приказом Минобрнауки России от 12.11.2015 г. № 1333.

Целью освоения дисциплины «Модели и методы анализа проектных решений» является изучение задач, методов, алгоритмов анализа проектных решений в современных ЭВС используемых при концептуальном проектировании сложных изделий, при разработке проектов автоматизированных систем различного назначения, а также при проведении технико-экономического анализа эффективности проектируемых систем.

Задачи дисциплины.

- 1. Получение теоретических и практических знаний о способах формализации задач анализа проектных решений, а также о методах их решения, применяемых в научно-исследовательской и проектной деятельности.
- 2. Приобретение практических навыков алгоритмизации методов оптимального проектирования и моделирования при концептуальном проектировании сложных изделий, разработке проектов автоматизированных систем различного назначения и анализе эффективности проектируемых систем.
- 3. Получение теоретических знаний и практических умений в области использования стандартных пакетов прикладных программ для решения задач моделирования и оптимального проектирования при разработке математических моделей исследуемых процессов и изделий, методик проектирования новых процессов и изделий, а также при проведении технико-экономического и функционально-стоимостного анализа эффективности проектируемых систем.

Перечень планируемых результатов обучения по дисциплине

Коды компетен- ций	Содержание Компетенций	Перечень планируемых результатов обучения по дисциплине
ОПК-1	способность представ- лять адекватную совре- менному уровню знаний научную картину мира на основе знаний естест- венных наук и математи- ки	Знать: основные положения, законы и методы математики для описания исследуемых процессов и изделий в современных ЭВС, способы математического описания проектных решений, содержательные и формализованные постановки задач анализа, применяемые при концептуальном проектировании сложных изделий. Уметь: самостоятельно разрабатывать математические модели при решении прикладных задач в научноисследовательской и проектной деятельности. Владеть: навыками анализа проектных решений при конструировании ЭВС.
ПК-1	Способность моделировать объекты и процессы, используя пакеты автоматизированного проектирования и исследования	Знать: перспективные методы исследования проектных решений на основе математического и имитационного моделирования, применяемые при концептуальном проектировании сложных изделий и анализе эффективности проектируемых систем. Уметь: разрабатывать модели проектируемых сложных изделий и применять перспективные методы их

исследования на основе математического и имитаци-
онного моделирования при решении профессиональ-
ных задач.
Владеть: практическими навыками алгоритмизации и
программной реализации методов математического и
имитационного моделирования основе знания миро-
вых тенденций развития вычислительной техники и
информационных технологий.

4. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Модели и методы анализа проектных решений» является обязательной, относится к вариативной части блока №1 дисциплин основной профессиональной образовательной программы академического бакалавриата «Конструирование и технология электронновычислительных средств» по направлению подготовки 11.03.03 Конструирование и технология электронных средств ФГБОУ ВО «РГРТУ».

Дисциплина изучается по очной форме обучения на 2 курсе в 4 семестре.

Пререквизиты дисциплины. Для изучения дисциплины обучаемый должен

знать: матрицы и определители; системы линейных уравнений; производную и дифференциал функции; дифференциальное исчисление для функций нескольких переменных; вероятности событий; случайные величины и их характеристики; законы распределения случайных величин; статистическая обработка данных; представление числовых данных в памяти компьютера; базовые принципы и технологии разработки алгоритмов и программ;

уметь: применять методы решения систем линейных уравнений; решать системы линейных уравнений; выполнять операции векторной алгебры; решать уравнения и системы уравнений; выполнять операции дифференцирования и интегрирования разрабатывать разветвляющиеся, циклические алгоритмы и алгоритмы в соответствии с принципом модульности для решения прикладных задач; разрабатывать и анализировать алгоритмы по условию прикладной задачи;

владеть: навыками алгоритмизации и программной реализации типовых задач программирования; средствами современных систем программирования для составления, отладки, тестирования программ на языках высокого уровня; навыками разработки программного обеспечения с помощью интегрированных сред; средствами современных пакетов прикладных программ автоматизации математических расчетов и обработки экспериментальных данных.

Взаимосвязь с другими дисциплинами. Курс «Модели и методы анализа проектных решений» содержательно и методологически взаимосвязан с другими курсами, такими как «Моделирование электронно-вычислительных средств», «Оптимизация в проектировании ЭС».

Программа курса ориентирована на возможность расширения и углубления знаний, умений и навыков бакалавра для успешной профессиональной деятельности.

Постреквизиты дисциплины. Компетенции, полученные в результате освоения дисциплины необходимы обучающемуся при изучении следующих дисциплин: «Преддипломная практика», «Выпускная квалификационная работа».

3. Объем дисциплины и виды учебной работы

Общая трудоемкость (объем) дисциплины (модуля) составляет 3 зачетные единицы (ЗЕ), 108 часов.

Вид учебной работы	Всего часов
Общая трудоемкость дисциплины, в том числе:	108
Контактная работа обучающихся с преподавателем (всего), в том	48
числе:	
Лекции	24

Лабораторные работы	16
Практические занятия	8
Самостоятельная работа обучающихся (всего),	60
в том числе:	
Курсовая работа / курсовой проект	-
Подготовка к экзамену, консультации	-
Консультации в семестре	6
Самостоятельные занятия	54
Вид промежуточной аттестации обучающихся	зачет

4. Содержание дисциплины

4.1. Содержание дисциплины, структурированное по темам (разделам)

Тема 1. Элементы системного анализа.

Системный подход, задачи анализа проектных решений. Математическая модель проектируемого объекта. Структурная и параметрическая оптимизация. Общая постановка задачи оптимизации.

Тема 2. Математическая постановка задач оптимизации и принятия решений.

Экстремальные задачи и их классификация: условные и безусловные; одномерные и многопараметрические; унимодальные и многоэкстремальные; однокритериальные и векторные. Многокритериальность. Выбор критериев оптимизации при решении инженерных задач. Методы оценивания важности частных критериев оптимальности. Основные виды задач математического программирования: линейные, нелинейные, выпуклые, невыпуклые, дискретные, непрерывные залачи.

Тема 3. Линейное программирование.

Математическая постановка задачи. Общая, стандартная и каноническая формы задачи линейного программирования. Базисные решения задачи линейного программирования. Геометрическая интерпретация. Стандартный симплекс-метод решения задачи линейного программирования. Табличная форма симплекс-метода.

Тема 4. Модели и методы дискретного программирования в задачах анализа проектных решений.

Общая характеристика задач и методов дискретного программирования. Задачи целочисленного программирования. Методы отсечения Гомори. Метод ветвей и границ. Применение метода ветвей и границ для задачи целочисленного линейного программирования. Задача о назначениях. Венгерский алгоритм. Метод динамического программирования для многошаговых задач принятия решений. Принцип оптимальности Беллмана. Основное функциональное уравнение. Вычислительная схема метода динамического программирования. Применение метода динамического программирования для решения прикладных задач.

Тема 5. Методы решения задач нелинейного программирования.

Методы безусловной оптимизации. Необходимые и достаточные условия существования безусловного экстремума. Вычислительная схема методов регулярного поиска экстремума. Координатные и градиентные методы. Методы нулевого и первого порядков. Градиентный метод, метод наискорейшего спуска, метод покоординатного спуска. Овражные и гребневые ситуации. Метод оврагов, методы сопряженных направлений. Поиск экстремума при ограничениях в виде равенств. Необходимые условия существования экстремума. Метод неопределенных множителей Лагранжа. Поиск экстремума при ограничениях в виде неравенств. Необходимые условия существования экстремума. Теорема Куна-Таккера. Методы штрафных функций. Методы случайного поиска экстремума в задачах нелинейного программирования. Методы Монте-Карло, случайного блуждания. Методы поиска глобального экстремума.

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах).

№ п/п	Тема	Общая трудоем- кость,	Контактная работа обучающихся с преподавателем				Самостоятельная работа обучающихся
		всего часов	Всего	лекции	Практ	Лабор	
1	Элементы системного анализа.	10	2	2	-	-	8
2	Математическая постановка задач	22	10	6	4	-	12
	оптимизации и принятия решений.						
3	Линейное программирование	26	16	6	2	8	10
4	Задачи и методы дискретного программирования.	34	18	8	2	8	16
5	Методы решения задач нелинейного программирования	10	2	2	-	-	8
6	Консультации в семестре	6	-	-	-	-	6
7	Зачет	-	-	-	-	-	-
	Bcero	108	48	24	8	16	60

Виды практических, лабораторных и самостоятельных работ

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость, часов
1	Элементы системного анализа.	Самостоятель- ная работа обучающихся	Изучение конспекта лекций	8
2	Математическая постановка задач оптимизации и принятия решений.	Практическая работа	Исследование возможностей стандартных пакетов прикладных программ для решения задач синтеза проектных решений	4
		Самостоятель- ная работа обучающихся	Изучение конспекта лекций Подготовка к практической работе	6
3	Линейное программирование	Практическая работа	Графическое решение задачи линейного программирования	2
		Лабораторная работа	Решение задачи линейного программирования средствами программы Excel	4
			Разработка и исследование программы для решения задачи линейного программирования	4
		Самостоятель- ная работа	Изучение конспекта лекций, подготовка к выполнению и	2
		обучающихся	защите лабораторной работы, оформление отчета	4 4
4	Задачи и методы дискретного программирования.	Практическая работа	Исследование структурных свойств графовых моделей проектных решений методом поиска в глубину (ширину)	2
		Лабораторная работа	Решение задач дискретного программирования средствами программы Excel (задача о назначениях)	4
			(транспортная задача)	4
		Самостоятель- ная работа обучающихся	Изучение конспекта лекций, подготовка к выполнению и защите лабораторной работы,	4 4 4
			оформление отчета	4
5	Методы решения задач нелинейного программирования	Самостоятельная работа обучающихся	Изучение конспекта лекций	8
6	Консультации в семестре	Самостоятель- ная работа обучающихся	Изучение конспекта лекций. Подготовка и выполнение ПЗ.	6

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Бакулева М.А., Скворцов С.В., Хрюкин В.И. Методы оптимизации. Рязань: РФ МЭСИ, 2015. $160 \, \mathrm{c}$.
- 2. Информационные технологии в линейной оптимизации [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост. С.В. Скворцов. Рязань, 2007. 28 с. Режим доступа: http://elib.rsreu.ru/ebs/download/956
- 3. Решение задач вычислительной математики в MathCAD [Электронный ресурс]: методические указания к лабораторной работе / Рязан. гос. радиотехн. акад.; сост.: А.А. Митрошин, С.В. Скворцов. Рязань, 2006. 16 с. Режим доступа: http://elib.rsreu.ru/ebs/download/955
- 4. Моделирование систем в среде GPSS World: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: В.А. Шибанов. Рязань: РГРТУ, 2008. 32 с.
- 5. Описание структур вычислительных систем на языке GPSS: методические указания к лабораторным работам / Рязан. гос. радиотехн. акад; сост.: С.В. Скворцов, И.А. Телков, В.И. Хрюкин.- Рязань: РГРТА, 1999. 37 с.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств приведен в Приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Модели и методы анализа проектных решений»).

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная учебная литература

- 7. Пылькин А.Н. Теория систем и системный анализ: учеб. М.: КУРС, 2017. 190с.
- 8. Советов Б.Я. Моделирование систем. Практикум: учеб. пособие. 2-е изд., перераб. и доп. М.: Высш. шк., 2003. 295с.
- 9. Пантелеев А.В. Методы оптимизации [Электронный ресурс]: учебное пособие / А.В. Пантелеев, Т.А. Летова. Электрон. текстовые данные. М.: Логос, 2011. 424 с. 978-5-98704-540-4. Режим доступа: http://www.iprbookshop.ru/9093.html
- 10. Акулич И.Л. Математическое программирование в примерах и задачах [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/2027
- 11. Казиев В.М. Введение в анализ, синтез и моделирование систем [Электронный ресурс] / В.М. Казиев. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 270 с. 5-9556-0060-4. Режим доступа: http://www.iprbookshop.ru/52188.html
- 12. Боев В.Д. Компьютерное моделирование [Электронный ресурс] / В.Д. Боев, Р.П. Сыпченко. 2-е изд. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 525 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73655.html

Дополнительная учебная литература

1. Аверченков В.И. Основы математического моделирования технических систем [Электронный ресурс]: учебное пособие / В.И. Аверченков, В.П. Федоров, М.Л. Хейфец. — Электрон.

- текстовые данные. Брянск: Брянский государственный технический университет, 2012. 271 с. 5-89838-126-0. Режим доступа: http://www.iprbookshop.ru/7003.html
- 2. Нахман А.Д. Введение в стохастическое моделирование [Электронный ресурс]: учебное пособие / А.Д. Нахман, Ю.В. Родионов. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 89 с. 978-5-4486-0168-2. Режим доступа: http://www.iprbookshop.ru/70761.html
- 3. Костюкова Н.И. Основы математического моделирования [Электронный ресурс] / Н.И. Костюкова. 2-е изд. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 219 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73691.html
- 4. Битюцкий В.П. Математическое обеспечение автоматизации проектирования [Электронный ресурс]: учебное пособие / В.П. Битюцкий, С.В. Битюцкая. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, 2015. 72 с. 978-5-7996-1447-8. Режим доступа: http://www.iprbookshop.ru/65942.html
- 5. Методы оптимизации в примерах в пакете MathCad 15. Ч. II: учебное пособие [Электронный ресурс]: учеб. пособие / С.В. Рыков [и др.]. Электрон. дан. Санкт-Петербург: НИУ ИТМО, 2015. 178 с. Режим доступа: https://e.lanbook.com/book/91489.

8. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины

Электронные образовательные ресурсы

- 1. Сайт национального общества имитационного моделирования [Электронный ресурс]. URL: http://simulation.su/
- 2. Учебное руководство по системе GPSS World [Электронный ресурс]. URL: http://open.ifmo.ru/images/5/56/33071_gpss_world_tutorial.pdf
- 3. Дигрис А. В. Дискретно-событийное моделирование: курс лекций [Электронный ресурс]. URL: http://simulation.su/uploads/files/default/2011-uch-posob-digris-diskr-sob-mod.pdf
- 4. Национальный открытый университет «ИНТУИТ» [Электронный ресурс]. URL: http://www.intuit.ru/
- 5. Образовательный математический сайт [Электронный ресурс]. URL: http://www.exponenta.ru/
- 6. Информационная система «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]. URL: http://window.edu.ru/

Профессиональные базы данных, информационно-справочные системы

- 3. Программирование на С и С++ (онлайн справочник) [Электронный ресурс]. URL: http://www.c-cpp.ru/books/obektno-orientirovannoe-programmirovanie
- 4. Справочник Turbo Pascal (онлайн справочник) [Электронный ресурс]. URL: http://tpdn.ru/

9. Методические указания для обучающихся по освоению дисциплины

Для освоения дисциплины требуется предварительная подготовка по соответствующим разделам высшей математики, программирования и алгоритмизации, включая навыки разработки программного обеспечения с помощью интегрированных программных сред (IDE).

Перед началом проведения лабораторных работ необходимо ознакомится с методическими указаниями к лабораторным работам. Обязательное условие успешного усвоения курса – большой объём самостоятельно проделанной работы.

Рекомендуется следующим образом организовать время, необходимое для изучения лисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю в ходе подготовки к практическому занятию и теоретическому зачету.

Изучение методических указаний к лабораторной работе — 2 часа перед выполнением лабораторной работы и в ходе разработки проекта и 2 часа для оформления отчета, отладки проекта и подготовки к сдаче работы.

Для успешного и своевременного выполнения практических и лабораторных работ рекомендуется использовать систему программирования PascalABC или Qt Creator с компилятором C++ MinGW, а также общецелевую систему имитационного моделирования GPSS World Student Version, которые желательно инсталлировать на домашнем компьютере. Для установки программного обеспечения используйте официальные репозитории.

Перед выполнением практического занятия необходимо внимательно ознакомиться с учебным материалом и заданием на самостоятельную работу. Желательно до занятия заранее выполнить подготовку программного проекта в инструментальной среде программирования или моделирования, чтобы на занятии осталось время для обсуждения и сдачи отчета.

Перед сдачей работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу. Таким образом вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме. Ответы на многие вопросы, связанные с дисциплиной «Модели и методы анализа проектных решений», вы можете получить в сети Интернет, посещая соответствующие информационные ресурсы.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;
- освоению умений прикладного и практического использования полученных знаний в области анализа и синтеза проектных решений в ЭВС;
- получению навыков использования стандартных программных средств для решения задач профессиональной деятельности.

Самостоятельная работа как вид учебной работы может использоваться на лекциях, практических и лабораторных занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к теоретическому зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов и тем дисциплины «Модели и методы анализа проектных решений»;
- выполнение практического или лабораторного задания: составление проекта программы для очередного практического или лабораторного занятия;
 - выполнение домашнего задания: тестирование и отладка программы;
 - выполнение курсового проекта;
 - подготовка к защите практического или лабораторного задания, оформление отчета.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для выполнения контроля знаний обучающимися используется тестовое задание в системе дистанционного тестирования РГРТУ «Академия» (http://distance.rrtu):

- тест по дисциплине «Методы анализа и синтеза проектных решений» (автор - профессор каф. САПР ВС Скворцов С.В.).

Перечень лицензионного программного обеспечения:

8) Операционная система Windows XP (лицензия Microsoft DreamSpark Membership ID 700102019);

- 9) Среда разработки PascalABC.NET (лицензия GNU LGPL). Режим доступа: http://pascalabc.net/ssyilki-dlya-skachivaniya
- 10) Среда разработки Qt Creator (лицензия LGPL). Режим доступа: http://www.gt.io/ru/download-open-source
- 11) Компилятор языка C++ MinGW (лицензия LGPL). Режим доступа: http://www.qt.io/ru/download-open-source
- 12) Общецелевая система моделирования GPSS World Student Version (лицензия Freeware). Режим доступа: http://www.minutemansoftware.com/downloads.asp
- 13) Система автоматизации математических расчетов MathCAD 14.0 (Product code SE14RYMMEV0002-FLEX-ACAD)
- 14) Табличный процессор MS Excel (входит в пакет MS Office Professional 2003. Open License 19996967)

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для освоения дисциплины необходимы:

- 4) для проведения лекционных занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарногигиеническим требованиям;
- 5) для проведения практических занятий необходим класс персональных компьютеров с инсталлированными операционными системами Microsoft Windows XP (или выше) и установленным лицензионным программным обеспечением, указанным выше (п.10);
- 6) для проведения лекций и практических занятий аудитория должна быть оснащена проекционным оборудованием.

Программу составил к.т.н., доцент кафедры САПР ВС

Хрюкин В.И.

Программа рассмотрена и одобрена на заседании кафедры САПР ВС (протокол № 8 от 20.08.2018 г.)

Зав. кафедрой САПР ВС д.т.н., проф.

Корячко В.П.