ФГБОУ ВО «Рязанский государственный радиотехнический университет им. В.Ф.Уткина»

КРЮКОВ АЛЕКСАНДР НИКОЛАЕВИЧ

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ПОНИЖАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Учебное электронное издание комплексного распространения

Рязань РГРТУ 2022

© Все права защищены

УДК 621.311.6: 621.396.6 ББК 31.264.5

Электропреобразовательные устройства

Для студентов специальностей 11.03.01 Радиотехника, 11.05.01 Радиоэлектронные системы и комплексы

В ходе работы формируются компетенции ПК-2:

Способен реализовать программы экспериментальных исследований, включая выбор технических средств и обработку результатов.

Способен организовывать и проводить экспериментальные исследования с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов.

Способен разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ.

Литература, использованная автором:

 Электропреобразовательные устройства: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т, сост.: Н.Г.Кипарисов, П.А.Крестов, В.Н.Сухоруков. Рязань, 2016, 56 с.
 Сайт Texas Instruments. [Электронный ресурс] https://www.ti.com

Минимальные системные требования: Процессор 1,3 GGz, 512 M6 RAM, SVGA (800х600), HDD 3 Gb, просмотрщик документов в формате *.pdf

Зарегистрировано редакционно-издательским центром РГРТУ 391005, г. Рязань, ул. Гагарина, 59/1 21.03.2022 № 7200 Объём 1,9 Мб. Тел. (4912) 72-03-48, Email: <u>kryukov.a.n@rsreu.ru</u>, <u>https://www.rsreu.ru</u>

C

Цели:

- разработать принципиальную схему импульсного понижающего преобразователя напряжения;

- реализовать программу экспериментальных исследований;

- экспериментально исследовать зависимости выходного напряжения преобразователя от входного, выходного напряжения от выходного тока;

- оценить качество стабилизации напряжения;

Введение

Ниже приведено пошаговое руководство по online разработке на сайте Texas Instruments принципиальной схемы понижающего преобразователя напряжения (DC-DC, конвертера) и исследованию его выходных характеристик с помощью САПР WEBENCH Power Designer. Руководство предполагает владение английским языком на уровне пользователя, наличие регистрации на сайте <u>https://www.ti.com</u> (для этого потребуется электронная почта за пределами РФ – например, на gmail.com). Для входа на сайт можно использовать VPN, браузеры Google Chrome, Firefox не ниже 60 версии, разрешение экрана не хуже 1280х1024. Результаты работы - принципиальная схема преобразователя, спецификация элементов, производимых Texas Instruments и её партнёрами, печатная плата, графики зависимостей выходного напряжения при увеличении нагрузки и изменении входного напряжения, ряд дополнительных параметров - доступны для скачивания после регистрации на сайте Texas Instruments. Схему можно экспортировать в Altium Designer, Cadence OrCAD, TINA-TI, CadSoft EAGLE, Mentor Graphics, P-CAD.

Отчёт по лабораторной работе содержит титульный лист, цели, обоснования выбора ИС, принципиальную схему (обозначения элементов должны читаться), графики реакций на изменения входного напряжения и выходного тока, пульсаций, таблицы, расчёты, выходные характеристики, выводы. Файлы online результатов исследований прилагаются к отчёту.

Исходные данные для проектирования:

Входное напряжение $V_{in Min} = N_{2}$ журн + 10 В, $V_{in Max} = N_{2}$ журн + 16 В, Выходное напряжение V_{out} = третья цифра N_{2} группы + N_{2} журн, В Выходной ток $I_{Out Max} = 4$ А — 0,1(N_{2} журн), А Входной импульсный ток — минимальное значение

1. Подготовка к проектированию

Analog En	nbedded Processing Semiconductor Co	mpany TI.com - Mozilla Firefo	ж	-	0
💠 Analog Embedded Processi 🗙 🕂					
← → C ²	m		⊌ ☆	II\ 🗉 🔹	n e
🔱 Texas Instruments	Search	Q	Login / Regis	ter 🌐 English	Ƴ SI
Products Applications Design resources Qua	lity & reliability Support & training	Order now About TI			
COVID-19 order fulfillment update					
Power path protection as your next design Explore design tips and tradeoffs in our	lessons as reliable free e-book				>
		•	11 Ways to Protect Our Power Parts	t tura socialemente	

Рисунок 1. Вход на сайт Texas Instruments. Нажмите Login

	myTI account; myTI login; personal TI account TI.com - Mozilla Firefox							8
•	🔅 myTI account; myTI login; per :	× +						
(+• https://login.ti.c	om/as/authorization.oau	th2?res ••• 💟	☆ ⊻	\ ⊡ @		≡
	🔱 Texas Inst	RUMENTS						
	Products Applications	Design resources	Quality & reliability	Support & train	iing Order n	ow About	TI	
	myTl account myTl FAQ							
	Existing myTI	user?	New user?					I
	Your email address		* Required					
	XXXX.XXXX @gma	il.com	* Country or region		* Zip or posta	l code		
	Your myTI password		Select one	•				
	* Company/university							
	Remember me							
			* First name		* Last name		_	_
	Login							
	Forgot your password?		* Your email address		* Confirm em	ail address	Privacy -	Terms
Рисунок 2	. Ввод пароля	я. Введит	e e-mail, p	assword	l, нажи	мите <mark>I</mark>	Logi	n

	myTI account: my	TI account TI.com - Mozilla Firefox	- 0
💠 myTI account: myTI ac	count × +		
← → ⊂ @	🚺 🔒 🗝 https://www.ti	.com/myti/docs/homepage 🗐 🛛 👓 😒	י לב של און עם און ע
Texas Instru	MENTS	Alex v (🌐 English 🗸 Ship to 🗸 USD 🗸
Menu Design resource	Quality & reliability		🔍 Search 🕘 My history 🎽
Reference designs 🕽	Design tools & simulation >	Embedded development >	Packaging 🕽
Automotive	Models & simulators	Hardware kits & boards	Find TI packages
Communications equipment	WEBENCH® Power Designer	Code Composer Studio [™] IDE & development tools	Find product by package
Enterprise systems	Power stage designer	Embedded software (SDKs)	Part marking lookup
Industrial	Power for processors & FPGAs		Moisture sensitivity level search
Personal electronics	Filter designer		
	Analog circuits		

TI home > myTI account myTI account		
	Ryazan State Radio Engineering University E Issian Federation Edit	dit
Profile		
Login & profile	My orders	WEBENCH® designs View all >
myTI FAQ	Order history	My designs My projects

Рисунок 3. Выбор САПР WEBENCH Power Designer

2. Начало проектирования WEBENCH® Power Designer | Overview | Design Resources | TI.com - Mozilla Firefox - 0 🐌 WEBENCH® Power Designer 🗙 C¹ Ū https://www.ti.com/design-resources/design ... 🖂 🏠 \mathbf{v} ۲ ii Ξ 111 1 WEBENCH® Power Designer Get started with the industry's most powerful end-to-end de Power stage designer Power for processors & FPGAs WEBENCH® Power Designer creates customized power supply circuits b Filter designer end power supply design capabilities that save you time during all phases Analog circuits Embedded development Design Easy to use Latest features Support and training Hardware kits & boards Try now

Code Composer Studio™ IDE & development tools

Third-Party Network

Рисунок 4. Выбор нового проекта. Нажмите Try Power Designer now

Try Power Designer now

h Deves Devices y	Power Designer - Mozilla Firefox	- 0 6
$\begin{array}{c} \hline \\ \hline $://webench. ti.com /power-designer/switching-regulator/s	elect 🗵 🏠 🔟 🗓 🔮 🛱 Ξ
	DESIGNER	NEW DESIGN LOGIN
Select a Design Input: DC 15 V - 24 V Output: 12.5 V at 2 A Temp: 30 °C	SELECT CUSTO	omize simulate export
Filters CLEAR FILTERS	187 matching designs out of 187 total designs	Sort by: Default TABLE VIEW
Filter by Part Number Regulator Type Module (Integrated Inductor) Converter (Integrated Switch) Controller (External Switch) Design Attributes Efficiency (%) 89 - 99		LMR33630B- Compare : SOIC SIMPLE SWITCHER® 3.8V to 36V, 3A Synchronous Buck Converter With Ultra-Low EMI Efficiency: 94.6% BOM Cost: \$1.88 Footprint: 206 mm ² BOM Count: 13 Topology: Buck Frequency: 1.4 MHz IC Cost: \$0.75 1ku

Рисунок 6. Исходным данным удовлетворяют 187 вариантов

Рисунок 7. Выберем Converter - преобразователь напряжения Если выбор Converter невозможен, выбирайте Controller. На рисунке 7 выбору удовлетворяют 151 вариант ИС. Выбираемая ИС должна иметь красную надпись SIMULATE.

3. Разработка принципиальной схемы преобразователя

Рисунок 8. Выбор (Compare) ИС ТРS54531.

Выбор должен быть обоснован (например, самая дешёвая, самый большой КПД, меньше всего навесных элементов, меньше размер печатной платы)

	Power Designer - Mozilla Firefox		- 0 🗙
🌵 Power Designer 🛛 🗙	+		
\leftrightarrow > C $$		• ⊠ ☆	II\ 🖸 🍭 詳 =
	VER DESIGNER	NEW DESIGN	MY DESIGNS
Simulate TPS54531DD	AR - 15V-24V to 12.50V @ 2A 2.5 V at 2 A Temp: 30 °C Change SELECT CUSTOMIZE	SIMULATE	EXPORT
Simulations	← Bode Plot		
Run New Simulation Bode Plot Startup Load Transient Input Transient Steady State START	Schematic To change components, click Customize on the header		Wavef Some simulations may take up to 15 minutes.

Рисунок 9. Принципиальная схема разрабатываемого преобразователя. В отчёте номиналы радиоэлементов должны читаться.

В процессе исследования необходимо выполнить все симуляции — Bode Plot, Startup, Load Transiert, Input Transiert, Steady State, нажимая **START**

4. Исследование преобразователя напряжения

Рисунок 10. Выбор исследования набора нагрузки Load Transient START

Рисунок 11. Идёт исследование

Рисунок 12. Реакция преобразователя напряжения на рост выходного тока

Рисунок 13. Сохранение результатов исследования в файл

Рисунок 14. Выбор исследования изменения напряжения Input Transient

Рисунок 15. Идёт исследование

Рисунок 16. Реакция преобразователя на изменение входного напряжения

Рисунок 17. Сохранение результатов исследования в файл

Рисунок 18. Выбор исследования пульсаций Steady State START

Рисунок 19. Пульсации выходного напряжения

Рисунок 20. Сохранение результатов исследования в файл

5. Обработка результатов

Обозначьте IOut sim = I_{μ} , VOut sim = U_{μ} , заполните Таблицу 1 Для получения значений I_{μ} и U_{μ} приложите горизонтальную линейку к графику реакции преобразователя напряжения на рост выходного тока (рис. 12) и поставьте в соответствие величинам напряжения на левой вертикальной оси значения величин тока на правой вертикальной оси. Зелёные цифры в таблицах и формулах приведены в качестве примера.

Таблица 1.

I _H	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0	
U _H	11,6	11,8	12,0	12,2	12,4	12,6	12,8	13,0	13,2	13,4	

Постройте график $U_{\mu} = f(I_{\mu})$ (образец на рис. 21 - например, по методичке Крюков А.Н. Построение графиков в одних осях в Calc N_{2} 7203).

 Рассчитайте
 значение
 внутреннего
 сопротивления
 стабилизатора

 напряжения по формуле
 13,4 – 11,6 B
 13,4 – 11,6 B
 13,4 – 11,6 B
 13,4 – 11,6 B

 $R_i = \frac{U_{H max} - U_{H min}}{I_{H max} - I_{H min}} = \frac{13,4 - 11,6 B}{2,0 - 0,2 A} = 1 OM$ 2,0 – 0,2 A
 10 M

Выходные характеристики

Рисунок 21. Реакция преобразователя на изменение выходного тока

Обозначьте VIn sim = E_0 , VOut sim = $U_{\rm H}$, по графику реакции преобразователя на изменение входного напряжения (как на рис. 16), приложив горизонтальную линейку, заполните таблицу 2

Таблица 2.

E ₀	17,2	17,5	18,0	18,5	19,0	20,0	20,5	21,0	21,5	22,0
U _H	12,14	12,20	12,25	12,34	12,43	12,56	12,65	12,74	12,8	12,9

Постройте график $U_{H} = f(E_{0})$ (образец на рис. 22).

Рассчитайте значение коэффициента стабилизации по формуле

$$K_{cr} = \frac{(E_{0 \text{ max}} - E_{0 \text{ min}}) * (U_{H \text{ max}} + U_{H \text{ min}})}{(U_{H \text{ max}} - U_{H \text{ min}}) * (E_{0 \text{ max}} + E_{0 \text{ min}})} = \frac{(22,0 - 17,2) * (12,9 + 12,14)}{(12,9 - 12,14) * (22,0 + 17,2)} =$$

= 3,36 раза

Выходные характеристики

Рисунок 22. Реакция преобразователя на изменение входного напряжения.

Зная принципы действия преобразователя напряжения, в выводах:

1. Поясните взаимосвязь величин выходного тока $I_{\mbox{\tiny H}}$ и выходного напряжения $U_{\mbox{\tiny H}}.$

2. Поясните взаимосвязь величин выходного напряжения $U_{\scriptscriptstyle H}$ и входного напряжения E_0 .

Выводы

- 1. При увеличении выходного тока $I_{\mbox{\tiny H}}$ выходное напряжение $U_{\mbox{\tiny H}}$
- 2. При увеличении входного напряжения Е₀ выходное напряжение U_н
- 3. Внутреннее сопротивление R_i равно 1 Ом
- 4. Коэффициент стабилизации Кст равен 3,36